Universal Denominators of Hilbert
نویسنده
چکیده
The denominator of the Hilbert series of a finitely generated R-module M does not always divide the denominator of the Hilbert series of R. For this reason, we define the universal denominator. The universal denominator of a module M is the least common multiple of the denominators of the Hilbert series of all submodules of M. The universal denominator behaves nicely with respect to short exact sequences and tensor products. It also has interesting geometric interpretations. Formulas are given for the universal denominator for rings of invariants. Dixmier gave a conjectural formula for the denominator of the Hilbert series of invariants of binary forms. We show that the universal denominator is actually equal to Dixmier's formula in that case.
منابع مشابه
Arithmetic Intersection on a Hilbert Modular Surface and the Faltings Height
In this paper, we prove an explicit arithmetic intersection formula between arithmetic Hirzebruch-Zagier divisors and arithmetic CM cycles in a Hilbert modular surface over Z. As applications, we obtain the first ‘non-abelian’ Chowla-Selberg formula, which is a special case of Colmez’s conjecture; an explicit arithmetic intersection formula between arithmetic Humbert surfaces and CM cycles in t...
متن کاملFactorization of Polynomials and GCD Computations for Finding Universal Denominators
We discuss the algorithms which, given a linear difference equation with rational function coefficients over a field k of characteristic 0, compute a polynomial U(x) ∈ k[x] (a universal denominator) such that the denominator of each of rational solutions (if exist) of the given equation divides U(x). We consider two types of such algorithms. One of them is based on constructing a set of irreduc...
متن کاملAn arithmetic intersection formula for denominators of Igusa class polynomials
In this paper we prove an explicit formula for the arithmetic intersection number (CM(K).G1)` on the Siegel moduli space of abelian surfaces, generalizing the work of Bruinier-Yang and Yang. These intersection numbers allow one to compute the denominators of Igusa class polynomials, which has important applications to the construction of genus 2 curves for use in cryptography. Bruinier and Yang...
متن کاملClass Invariants for Quartic CM Fields
— One can define class invariants for a quartic primitive CM field K as special values of certain Siegel (or Hilbert) modular functions at CM points corresponding to K. Such constructions were given by de Shalit-Goren and Lauter. We provide explicit bounds on the primes appearing in the denominators of these algebraic numbers. This allows us, in particular, to construct S-units in certain abeli...
متن کاملWeil-petersson Metric on the Universal Teichmüller Space I: Curvature Properties and Chern Forms
We prove that the universal Teichmüller space T (1) carries a new structure of a complex Hilbert manifold. We show that the connected component of the identity of T (1), the Hilbert submanifold T0(1), is a topological group. We define a Weil-Petersson metric on T (1) by Hilbert space inner products on tangent spaces, compute its Riemann curvature tensor, and show that T (1) is a Kähler -Einstei...
متن کامل